

Universität Stuttgart Institut für Raumfahrtsysteme

Flying Laptop Abschlussworkshop

Missionsplanung und Satellitenbetrieb Jonas Keim

Initial Satellite Operations LEOP

- Preparation for LEOP phase started in mid 2016
 - Preparation of verified flight procedures for all LEOP tasks
 - Operations lecture and simulator trainings

- LEOP: Launch on 14.07.2017 6:36:49 UTC on-board a Soyuz Fregat from Baikonur
 - Operations performed 20 hours a day in two shifts (9 positions)
 - · 60 passes executed within 4 days
 - DLR ground station network (Weilheim Germany, Inuvik Canada, O'Higgins Antarctica)
 - · Solar panels deployed on second day
 - Higher attitude control devices and modes checked
 - pointing accuracies below 1°

Initial Satellite Operations Commissioning

- 2 daily shifts (4 positions) using only passes over ground stations in Germany
- Increasing workload for mission planner
 - shift from live execution to time-tagged execution
- All payload devices were taken into operation
 - First image from PamCam received 5 days after launch
 - AIS antenna deployed and first AIS signals received
- · Redundant satellite bus components were checked out
 - On-board computer, IO-Boards, CCSDS-Boards
 - Transmitter
- IRS ground station taken into operation

Transition to Nominal Satellite Operations

- Need for on-board software updates
 - Bug-Fixes (Star tracker handling, TM storage, GPS overflow, Queue ...)
 - Improvement of ACS performance
- Problem: Parts of development and operations team share same personal
 - High workload
- Increasing number of requests for payload data and experiment slots
 - Available software tools to handle requests required significant manual work
 - Command stack were created manually by command controller (error prone)
 - Scheduling conflicts and inflexible mission planning
 - · On-board queue not used efficiently

Transition to Nominal Satellite Operations

- Solution: in-house development of ground-based automation software tools
 - Flight dynamics
 - Mission planning (ground station and satellite activity scheduling)
 - Routine and Payload request handling
 - Technology demonstration (OSIRIS pointing pattern)
- Result: Staffing and pass execution reduced drastically
 - Uplink passes reduced to one each working day (5 passes each week)
 - Scheduled downlink only passes (26 passes each week)
 - Passes: only one team member sends pre-defined command stack and monitors live TM and antenna (no "Lights Out" operations due to legal reasons)
 - Flight Director works independently of passes
 - "Last Minute" changes for satellite activities possible (Uplink Uplink scheduling)

Satellite Operations Documentation and Mission Planning

- activity tracking is done in "redmine"
- browser based tool to track activities
- based on "issues" (~ "Ticket")
- each type of issue is like a form to be filled out for a specific operations related action
- Interacts with automation tools

Satellite Operations Documentation and Mission Planning

Redmine Issues Overview and Hierarchy

Overview: Ground Segment Automation Tools

University of Stuttgart

Mission Planning

Flight Dynamics Program

- 2x daily GPS data processing and OPM/TLE generation
- SGP4 and TLEs used for daily 4 week orbit propagation
- Weekly GS scheduling (including external GS) and pass utilization

Mission Planning

Routine Operations Handling

- Handles all time-tagged activities between two uplink passes
 - Transmitter (de)activation
 - Mode changes and pointing manoeuvres
 - Handles overlapping passes
 - Telemetry dumps and deletion
 - All timings based on pass data in Flight Dynamics DB
- · Live activities during the uplink pass
 - Spacecraft Green Check
 - Upload of TLE for on-board propagator
 - Communication Timer
- Command stack is automatically created before the pass

	 Live and time-tagged TC
Routine	 TX (de)activation
Operations	 Modes and pointing
Handling	•TM dumps
	 Stack Checks

Mission Planning Payload request handling

- User fills form for (non)-recurring data takes
- Starts observability calculation
 - Considering uplink passes, latest TLE and constraints
 - Observability Report
- Requests single data take or start campaign
 - On-board memory allocation
 - Conflict check with mission schedule
 - · Payload dump pass allocation
 - Stack creation and uplink pass allocation
- Status tracking and email notifications
- Re-dumps are scheduled automatically

	1 MPS 1535981468 0 ADB13.7 0	
	C AYC00005 1 1 1 0 0 0 0 0 0 6 1 1 1536073310 0 YYQ00072 1 0	
Ob	YMP00014 0 0 2 0 1128333312 1	
	AYP00000 0 0 2 0 5 1	
Light	AYP00011 0 3 2 0 42.365321 1	•
	AYP00012 0 3 2 0 -71.055638 1	
	AYP00013 0 3 2 0 0.0 1	
	AYP00100 0 4 2 1 Do Not Activate 1	
	C YMC22001 1 1 1 0 0 0 0 0 0 3 1 1 1536073315 0 YYQ00072 11 0	
MMLL Allocatio	YMP00012 0 4 2 1 System 1	
Mino Anocano	YMP00120 0 4 2 1 MICS_PC_Target 1	
	CILRC02ACTITITIT00000000000101111550075490001LR0010191111100	
Dump report:	LPD2000010001010101110200 1111	.43)
Dump report.	LRF30000101412111Nomina111	.43)
Europetian Char	LPP30007 0 0 2 0 44520 1	an all
Execution Sta	CIERC020C1111111010101010101010111115360734011011800010101111110	na)
	VMD00111012111000350311	nand)
		and)
	IRP300001014121111ane 2111	icanci)
Den Harle Oter	LRP30002101412111Nomina1111	
Downlink Stat	LRP30005101012101105984111	
	LRP3000710101210111400411	
	CILRC02AC11111100000000000000000000000000000	
	YMP00011 0 0 2 0 1146093568 1	
	DSP00011 0 0 2 0 41153 1	
	LRP30000 0 4 2 1 Lane 3 1	
	LRP30002 0 4 2 1 Nominal 1	
	LRP30005 0 0 2 0 64512 1	
	LRP30007 0 0 2 0 75612 1	
	C LRC02112 1 1 1 0 0 0 0 0 0 4 1 1 1536073580 0 0 0 0	
	YMP00011 0 0 2 0 1146093568 1	
	DSP00011 0 0 2 0 4386 1	
	LRP20011 0 4 2 1 SSRAM 1 1	
	LRP20012 0 4 2 1 MICS NIR 1	
	C LRC02112 1 1 1 0 0 0 0 0 0 4 1 1 15360/3581 0 0 0 0	
	YMP00011 0 0 2 0 1146093568 1	
	LRP20011 0 4 2 1 mmu 1 1	
	LRF20012 0 4 2 1 35RAH 1 1 1	
	YMP808111818121811146893568111	
	DSP0001110101210141120111	
	LBP30000101412111Lane 1111	
	LRP30003101412111Infinite111	
	LRP300041010121010111	ss: 68%
	LRP30002 0 4 2 1 Nominal 1	
Scheduled Start	LRP30005 0 0 2 0 44928 1	
Oshadulad E. J	C LRC02112 1 1 1 0 0 0 0 0 4 1 1 1536073583 0 0 0 0	
Scheduled End:	YMP00011 0 0 2 0 1146093568 1	
Start Data Take	DSP00011 0 0 2 0 4386 1	
Start Data Take.	LRP20011 0 4 2 1 SSRAM 4 1	
End Data Take:	LRP20012 0 4 2 1 PAMCAM 1	
	C LRC02112 1 1 1 0 0 0 0 0 0 4 1 1 1536073584 0 0 0 0	
	YMP00011 0 0 2 0 1146093568 1	
	DSP00011 0 0 2 0 4386 1	
N	LKP2001104211MMU 211	
IN COL	LKP20012 0 4 2 1 SSRAM 4 1	
	C LRC02AA1 1 1 1 0 0 0 0 0 0 7 1 1 1536073585 0 0 0 0	
	TMP00011 0 0 2 0 1146093568 1	
AIS dat	LRP30000[0]4]2]1[Lane 2]1]	
	IRP3000210141211 Nomina] 111	
	IRP30005101012101105984111	

Thank you!

Jonas Keim, M.Sc.

e-mail keim@irs.uni-stuttgart.de phone +49 (0) 711 685- 69606

University of Stuttgart Institute of Space Systems Pfaffenwaldring 29, 70569 Stuttgart

Workshop Ansätze

- Einschätzung/Vergleich Stand Missionsplanung und Satellitenbetrieb mit anderen Institutionen
- Was lief gut/schlecht bzw. würde sich besser machen lassen
- Relevanz für die Zukunft (weitere Missionen, Multimissionsfähigkeiten, neue Ansätze ...)

Mission Planning

Key Python Stack Module

- Stack Parser and Checker
 - Input: command stack file
 - Output: list of all TCs with calibrated parameters (MIB)
 - Check Report (critical commands, pointing, modes ...)
- Stack Creator
 - · Use Python syntax to create command stacks
 - Commands or sequences as objects with parameters as attributes
 - · Render to different command stacks
 - Based on commands and procedures (seq.) from MIB
- Stack Combiner
 - · Combines all stacks indented to be uplinked during a pass
- Checks uplink duration with pass duration (flight dynamics db)

